

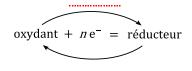
Quelques révisions au sujet de l'oxydo-réduction

Définition d'un oxydant

Un oxydant est une espèce chimique capable de **capter** un ou plusieurs **électrons e**.

Définition d'un réducteur

Un réducteur est une espèce chimique capable de **céder** un ou plusieurs **électrons e**⁻.


Couple oxydant / réducteur

Deux espèces chimiques forment un couple oxydant / réducteur, noté **Ox / Red**, si l'on peut passer de l'une à l'autre par perte ou gain d'électrons,

Ce sont des espèces chimiques conjuguées.

On associe au couple la demi-équation électronique :

Oxydant + n e- = réducteur

Méthode pour écrire les demi-équations d'oxydoréduction

- Écrire l'oxydant et le réducteur de part et d'autre du signe égal.
- Assurer la conservation de l'élément autre que H et O en choisissant les nombres stœchiométriques adaptés.
- Assurer la conservation de l'élément O avec des molécules d'eau H₂O.
- Assurer la conservation de l'élément H avec des protons H+
- Assurer la conservation de la charge électrique avec des électrons e-.

Réaction d'oxydoréduction

C'est le **transfert d'au moins un électron** du réducteur d'un couple vers l'oxydant d'un autre couple.

Les électrons n'existent pas en solution aqueuse. Ils ne doivent donc pas apparaître dans une équation qui modélise une oxydoréduction.

Méthode pour écrire les équations d'oxydoréduction

- Écrire les couples qui interviennent.
- Écrire les demi-équations électroniques en écrivant à gauche les réactifs.
- Multiplier les demi-équations par des nombre choisis pour que le nombre d'électrons dans chacune des demiéquations soit le même.
- « Additionner » les demi-équations en tenant compte de ces nombres.

Pour s'entrainer...

	Réaction des ions cuivre Cu ²⁺ avec le métal zinc Zn	Réaction des ions permanganate avec les ions fer II.
Solutions ou espèces chimiques mélangées		Solution de permanganate de potassium (K ⁺ ,MnO ₄ ⁻) Solution de sulfate de fer (Fe ²⁺ , SO ₄ ²⁻).
Couples en jeu	Cu^{2+} / Cu Zn^{2+} / Zn	MnO_4 - $/Mn^{2+}$ Fe^{3+}/Fe^{2+}
Demi-équations	•	•
	•	•
Équation de la réaction		
Espèces réagissantes	Oxydant: Réducteur:	Oxydant: Réducteur:

	Réaction des ions iodure avec le peroxyde d'hydrogène en milieu acide	Réaction des ions thiosulfate avec l'acide chlorhydrique
Solutions mélangées	Solution d'iodure de potassium (K ⁺ ,I ⁻) Solution de peroxyde d'hydrogène H ₂ O ₂ (eau oxygénée)	Solution de thiosulfate de sodium (2Na ⁺ , S ₂ O ₃ ²⁻) Solution d'acide chlorhydrique (H ⁺ , Cl ⁻)
Couples en jeu	I ₂ /I ⁻ H ₂ O ₂ /H ₂ O	S ₂ O ₃ ² -/S SO ₂ / S ₂ O ₃ ² -
Demi-équations	•	•
	•	•
Équation de la réaction		
Espèces réagissantes	Oxydant: Réducteur:	Oxydant: Réducteur:

Remarque En solution les ions H^{+} n'existent pas. Ils s'associent aux molécules d'eau pour former les ions oxonium $H_{3}O^{+}$.

Terminale - Spécialité LDCM - 2025-2026